Globicatella sanguinis: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Uncurated}}
{{Uncurated}}


[[Image:Filename.jpg|thumb|300px|right|Legend. Image credit: Name or Publication.]]
[[Image:Filename.jpg|thumb|300px|right|Gram stain and blood agar plate of Globicatella sanguinis. Image credit: S. Takahashi,Tokyo Saiseikai Central Hospital.]]


   
   
Line 14: Line 14:


Order: Lactobacillales
Order: Lactobacillales
Family: Aerococcaceae
{|
| height="10" bgcolor="#FFDF95" |
'''NCBI: [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=13076&lvl=3&lin=f&keep=1&srchmode=1&unlock]'''
|}
''Globicatella sanguinis''


==Description and Significance==
==Description and Significance==


Globicatella sanguinis (G. sanguinis) is cocci shaped. Its cellular arrangement consists of pairs and short chains. G. sanguinis thrive in the human body. It is a pathogen that causes infection within the bloodstream, central nervous system, and the urinary tract. It is important to conduct research and expand our knowledge of G. sanguinis because it is a pathogen that is difficult to identify phenotypically. It is becoming more prevalent within different diseases in the body.
''Globicatella sanguinis'' (''G. sanguinis'') is cocci shaped. Its cellular arrangement consists of pairs and short chains. ''G. sanguinis'' thrive in the human body. It is a pathogen that causes infection within the bloodstream, central nervous system, and the urinary tract. It is important to conduct research and expand our knowledge of ''G. sanguinis'' because it is a pathogen that is difficult to identify phenotypically. It is becoming more prevalent within different diseases in the body.


==Genome Structure==
==Genome Structure==


The genome of Globicatella sanguinis is small, with a size of approximately 2.6 million base pairs. It consists of a single, circular chromosome. It encodes a diverse range of genes that are essential for the bacterium's survival and growth inside the oral cavity. Such elements can facilitate horizontal gene transfer, which allows for the bacterium to gain new genetic traits, including antibiotic resistance. G. sanguinis  genome also contains regulatory networks that control gene expression. These networks allow the bacterium to adapt to ongoing changing conditions so it can optimize its growth and survival.
The genome of ''Globicatella sanguinis'' is small, with a size of approximately 2.6 million base pairs. It consists of a single, circular chromosome. It encodes a diverse range of genes that are essential for the bacterium's survival and growth inside the oral cavity. Such elements can facilitate horizontal gene transfer, which allows for the bacterium to gain new genetic traits, including antibiotic resistance. ''G. sanguinis'' genome also contains regulatory networks that control gene expression. These networks allow the bacterium to adapt to ongoing changing conditions so it can optimize its growth and survival.


==Cell Structure, Metabolism and Life Cycle==
==Cell Structure, Metabolism and Life Cycle==


Cell structure of G. sanguinis is a gram-positive bacteria. G. sanguinis metabolizes through peptide catabolic energy, active glycolytic, and heterolactic fermentation. G. sanguinis grow anaerobically and are also alpha-hemolytic, meaning that they have the ability to break down red blood cells. G. sanguinis is catalase negative.
The cell structure of ''G. sanguinis'' is a gram-positive bacteria. ''G. sanguinis'' metabolizes through peptide catabolic energy, active glycolytic, and heterolactic fermentation. ''G. sanguinis'' grow anaerobically and are also alpha-hemolytic, meaning that they have the ability to break down red blood cells. ''G. sanguinis'' is catalase negative.


==Ecology and Pathogenesis==
==Ecology and Pathogenesis==


G. sanguinis has been found to colonize the skin, mucosal surfaces (i.e. the lungs), blood, and urinary tract of humans. It is often part of the typical skin and mucosal microbiota but can become pathogenic if able to enter and colonize the bloodstream or other areas of the body. However, the chances of infection for most people are low, as it is a rare, opportunistic pathogen with small case numbers. Most cases are found in those who are immunocompromised and more susceptible to infection. G. sanguinis can cause various diseases and symptoms based on where it was able to colonize. For example, if the bacterium can colonize the mucosal membrane of the lungs, it can cause meningitis; if it is able to colonize the urinary tract, it can cause a urinary tract infection (UTI).
''G. sanguinis'' has been found to colonize the skin, mucosal surfaces (i.e. the lungs), blood, and urinary tract of humans. It is often part of the typical skin and mucosal microbiota but can become pathogenic if able to enter and colonize the bloodstream or other areas of the body. However, the chances of infection for most people are low, as it is a rare, opportunistic pathogen with small case numbers. Most cases are found in those who are immunocompromised and more susceptible to infection. ''G. sanguinis'' can cause various diseases and symptoms based on where it was able to colonize. For example, if the bacterium is able to invade and colonize the urinary tract, it can cause a urinary tract infection (UTI).
Although this is primarily a human pathogen, there have been few documented animal cases. The first documented case of G. sanguinis being associated with animal disease was published in 2000. This study found meningoencephalitis associated with G. sanguinis infection in lambs.  


Symptoms of infection: meningeoencephalitis
Although this is primarily a human pathogen, there have been few documented animal cases. The first documented case of ''G. sanguinis'' being associated with animal disease was published in 2000. This study found meningoencephalitis associated with ''G. sanguinis'' infection in lambs.


==References==
==References==
Line 38: Line 48:
1. Andy O. Miller, Seanne P. Buckwalter, Michael W. Henry, Fann Wu, Katherine F. Maloney, Bisrat K. Abraham, Barry J. Hartman, Barry D. Brause, Susan Whittier, Thomas J. Walsh, Audrey N. Schuetz, Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease, Open Forum Infectious Diseases, Volume 4, Issue 1, Winter 2017, ofw277, https://doi.org/10.1093/ofid/ofw277
1. Andy O. Miller, Seanne P. Buckwalter, Michael W. Henry, Fann Wu, Katherine F. Maloney, Bisrat K. Abraham, Barry J. Hartman, Barry D. Brause, Susan Whittier, Thomas J. Walsh, Audrey N. Schuetz, Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease, Open Forum Infectious Diseases, Volume 4, Issue 1, Winter 2017, ofw277, https://doi.org/10.1093/ofid/ofw277


2. Miller, A. O., Buckwalter, S. P., Henry, M. W., Wu, F., Maloney, K. F., Abraham, B. K., Hartman, B. J., Brause, B. D., Whittier, S., Walsh, T. J., & Schuetz, A. N. (2017). Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease. Open forum infectious diseases, 4(1), ofw277. https://doi.org/10.1093/ofid/ofw277
2. Huynh B, Kanitkar A. “Globicatella Sanguinis Bacterium: Rare Cause of Bacteremia and Septic Shock”. “CHEST Journal”. 2024. Volume 166, Issue 4. doi: 10.1016/j.chest.2024.06.1763
 
3. Miller, A. O., Buckwalter, S. P., Henry, M. W., Wu, F., Maloney, K. F., Abraham, B. K., Hartman, B. J., Brause, B. D., Whittier, S., Walsh, T. J., & Schuetz, A. N. (2017). Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease. Open forum infectious diseases, 4(1), ofw277. https://doi.org/10.1093/ofid/ofw277


3. Shewmaker PLSteigerwalt AG, Shealey L, Weyant R, Facklam RR.2001.DNA Relatedness, Phenotypic Characteristics, and Antimicrobial Susceptibilities of Globicatella sanguinis Strains. J Clin Microbiol39:.https://doi.org/10.1128/JCM.39.11.4052-4057.2001
4. Shewmaker PLSteigerwalt AG, Shealey L, Weyant R, Facklam RR.2001.DNA Relatedness, Phenotypic Characteristics, and Antimicrobial Susceptibilities of Globicatella sanguinis Strains. J Clin Microbiol39:.https://doi.org/10.1128/JCM.39.11.4052-4057.2001


4. Vela, A I et al. “Meningoencephalitis associated with Globicatella sanguinis infection in lambs.” Journal of clinical microbiology vol. 38,11 (2000): 4254-5. doi:10.1128/JCM.38.11.4254-4255.2000
5. Vela, A I et al. “Meningoencephalitis associated with Globicatella sanguinis infection in lambs.” Journal of Clinical Microbiology vol. 38,11 (2000): 4254-5. doi:10.1128/JCM.38.11.4254-4255.2000


5. Yu Y, Tsitrin T, Bekele S, et al. Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. Biochemistry Insights. 2019;12. doi:10.1177/1178626419875089
6. Yu Y, Tsitrin T, Bekele S, et al. Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. Biochemistry Insights. 2019;12. doi:10.1177/1178626419875089


==Author==
==Author==

Latest revision as of 14:24, 11 December 2024

This student page has not been curated.
Gram stain and blood agar plate of Globicatella sanguinis. Image credit: S. Takahashi,Tokyo Saiseikai Central Hospital.


Classification

Domain: Bacteria

Phylum: Bacillota

Class: Bacilli

Order: Lactobacillales

Family: Aerococcaceae

NCBI: [1]

Globicatella sanguinis

Description and Significance

Globicatella sanguinis (G. sanguinis) is cocci shaped. Its cellular arrangement consists of pairs and short chains. G. sanguinis thrive in the human body. It is a pathogen that causes infection within the bloodstream, central nervous system, and the urinary tract. It is important to conduct research and expand our knowledge of G. sanguinis because it is a pathogen that is difficult to identify phenotypically. It is becoming more prevalent within different diseases in the body.

Genome Structure

The genome of Globicatella sanguinis is small, with a size of approximately 2.6 million base pairs. It consists of a single, circular chromosome. It encodes a diverse range of genes that are essential for the bacterium's survival and growth inside the oral cavity. Such elements can facilitate horizontal gene transfer, which allows for the bacterium to gain new genetic traits, including antibiotic resistance. G. sanguinis genome also contains regulatory networks that control gene expression. These networks allow the bacterium to adapt to ongoing changing conditions so it can optimize its growth and survival.

Cell Structure, Metabolism and Life Cycle

The cell structure of G. sanguinis is a gram-positive bacteria. G. sanguinis metabolizes through peptide catabolic energy, active glycolytic, and heterolactic fermentation. G. sanguinis grow anaerobically and are also alpha-hemolytic, meaning that they have the ability to break down red blood cells. G. sanguinis is catalase negative.

Ecology and Pathogenesis

G. sanguinis has been found to colonize the skin, mucosal surfaces (i.e. the lungs), blood, and urinary tract of humans. It is often part of the typical skin and mucosal microbiota but can become pathogenic if able to enter and colonize the bloodstream or other areas of the body. However, the chances of infection for most people are low, as it is a rare, opportunistic pathogen with small case numbers. Most cases are found in those who are immunocompromised and more susceptible to infection. G. sanguinis can cause various diseases and symptoms based on where it was able to colonize. For example, if the bacterium is able to invade and colonize the urinary tract, it can cause a urinary tract infection (UTI).

Although this is primarily a human pathogen, there have been few documented animal cases. The first documented case of G. sanguinis being associated with animal disease was published in 2000. This study found meningoencephalitis associated with G. sanguinis infection in lambs.

References

1. Andy O. Miller, Seanne P. Buckwalter, Michael W. Henry, Fann Wu, Katherine F. Maloney, Bisrat K. Abraham, Barry J. Hartman, Barry D. Brause, Susan Whittier, Thomas J. Walsh, Audrey N. Schuetz, Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease, Open Forum Infectious Diseases, Volume 4, Issue 1, Winter 2017, ofw277, https://doi.org/10.1093/ofid/ofw277

2. Huynh B, Kanitkar A. “Globicatella Sanguinis Bacterium: Rare Cause of Bacteremia and Septic Shock”. “CHEST Journal”. 2024. Volume 166, Issue 4. doi: 10.1016/j.chest.2024.06.1763

3. Miller, A. O., Buckwalter, S. P., Henry, M. W., Wu, F., Maloney, K. F., Abraham, B. K., Hartman, B. J., Brause, B. D., Whittier, S., Walsh, T. J., & Schuetz, A. N. (2017). Globicatella sanguinis Osteomyelitis and Bacteremia: Review of an Emerging Human Pathogen with an Expanding Spectrum of Disease. Open forum infectious diseases, 4(1), ofw277. https://doi.org/10.1093/ofid/ofw277

4. Shewmaker PLSteigerwalt AG, Shealey L, Weyant R, Facklam RR.2001.DNA Relatedness, Phenotypic Characteristics, and Antimicrobial Susceptibilities of Globicatella sanguinis Strains. J Clin Microbiol39:.https://doi.org/10.1128/JCM.39.11.4052-4057.2001

5. Vela, A I et al. “Meningoencephalitis associated with Globicatella sanguinis infection in lambs.” Journal of Clinical Microbiology vol. 38,11 (2000): 4254-5. doi:10.1128/JCM.38.11.4254-4255.2000

6. Yu Y, Tsitrin T, Bekele S, et al. Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. Biochemistry Insights. 2019;12. doi:10.1177/1178626419875089

Author

Page authored by Adisen Ames, Caleb Barker, Tasnim Goubar, & Samantha Kopyar, students of Prof. Bradley Tolar at UNC Wilmington.