Shewanella putrefaciens: Difference between revisions

From MicrobeWiki, the student-edited microbiology resource
Line 27: Line 27:
Shewanella putrefaciens can be found in freshwater, brackish, and salt water ecosystems. Many healthy marines animals are contaminated with Shewanella putrefaciens only to have it be realized when food caught by seafood industries spoils due to the bacterias presence. In freshwater animals, and in particular fish species of trout, the bacteria has been shown to cause disease. The effect of the bacteria is seen through external lesions and visible bacterial colonies. Fatality from Shewanella Putrefaciens usually only occurs if the fish are already in poor health, under environmental stress or a whole body inner infection occurs that impedes organ function. Most research done on Shewanella putrefaciens in relation to marine life concentrates on the prevention of bacterial outbreaks in fisheries. Much of the problem in prevention comes from Shewanella's tendency to become a contaminant  or saprophyte, meaning it is often found living among other bacterial infections on previously damaged organs, as well as the bacteria's ability to survive at extreme low temperatures and respiratory diversity. These things combined make the bacteria hard to detect until after the death of an organism, and hard to kill without the use of antibiotics. Shewanella putrefaciens is also known to cause the rotting smell associated with dead fish because of its production of trimethylamines.
Shewanella putrefaciens can be found in freshwater, brackish, and salt water ecosystems. Many healthy marines animals are contaminated with Shewanella putrefaciens only to have it be realized when food caught by seafood industries spoils due to the bacterias presence. In freshwater animals, and in particular fish species of trout, the bacteria has been shown to cause disease. The effect of the bacteria is seen through external lesions and visible bacterial colonies. Fatality from Shewanella Putrefaciens usually only occurs if the fish are already in poor health, under environmental stress or a whole body inner infection occurs that impedes organ function. Most research done on Shewanella putrefaciens in relation to marine life concentrates on the prevention of bacterial outbreaks in fisheries. Much of the problem in prevention comes from Shewanella's tendency to become a contaminant  or saprophyte, meaning it is often found living among other bacterial infections on previously damaged organs, as well as the bacteria's ability to survive at extreme low temperatures and respiratory diversity. These things combined make the bacteria hard to detect until after the death of an organism, and hard to kill without the use of antibiotics. Shewanella putrefaciens is also known to cause the rotting smell associated with dead fish because of its production of trimethylamines.


[[Image:Screen_shot_2013-11-29_at_12.55.17_PM.png|thumb|300px|right| Open lesion of Shewanella putrefaciens on a carp taken by environment agency, UK.]]
[[Image:Screen_shot_2013-11-29_at_12.55.17_PM.png|thumb|300px|right| Open lesion of Shewanella putrefaciens on a carp taken by Environment Agency, UK.]]


<br><br>
<br><br>

Revision as of 19:07, 29 November 2013

Introduction

Shewanella putrefaciens is a bacteria that is found mainly in marine environments. It is a gram negative bacteria, meaning it does not dye during gram staining, which usually indicates a stronger antibiotic resistance. It is also a facultative anaerobe, meaning it can undergo aerobic respiration when oxygen is present, and can reduce iron and magnesium metabolically. Because of this Shewanella putrefaciens can reduce Uranium and create uranium deposits. Sheweanella putrefaciens grows quickly on both solid and liquid media and is recognizable for its pink color. Shewanella putrefaciens was first isolated from dairy products in 1931 by Derby and Hammer. It is classified as an Achromobacter and later named by MacDonell and Colwell in 1985.

Scanning electomicrograph image of Shewanella Putrefaciens CN32 cells taken by the Department of Energy.


At right is a sample image insertion. It works for any image uploaded anywhere to MicrobeWiki. The insertion code consists of:
Double brackets: [[
Filename: PHIL_1181_lores.jpg
Thumbnail status: |thumb|
Pixel size: |300px|
Placement on page: |right|
Legend/credit: Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.
Closed double brackets: ]]

Other examples:
Bold
Italic
Subscript: H2O
Superscript: Fe3+




Effect on Marine Life

Shewanella putrefaciens can be found in freshwater, brackish, and salt water ecosystems. Many healthy marines animals are contaminated with Shewanella putrefaciens only to have it be realized when food caught by seafood industries spoils due to the bacterias presence. In freshwater animals, and in particular fish species of trout, the bacteria has been shown to cause disease. The effect of the bacteria is seen through external lesions and visible bacterial colonies. Fatality from Shewanella Putrefaciens usually only occurs if the fish are already in poor health, under environmental stress or a whole body inner infection occurs that impedes organ function. Most research done on Shewanella putrefaciens in relation to marine life concentrates on the prevention of bacterial outbreaks in fisheries. Much of the problem in prevention comes from Shewanella's tendency to become a contaminant or saprophyte, meaning it is often found living among other bacterial infections on previously damaged organs, as well as the bacteria's ability to survive at extreme low temperatures and respiratory diversity. These things combined make the bacteria hard to detect until after the death of an organism, and hard to kill without the use of antibiotics. Shewanella putrefaciens is also known to cause the rotting smell associated with dead fish because of its production of trimethylamines.

Open lesion of Shewanella putrefaciens on a carp taken by Environment Agency, UK.



Impact on Humans

Shewanella putrefaciens as a humans pathogen is very rare. If it does effect human health it is typically only seen to show effects in combination eith other bacterial infections such as E.coli, pneumonia, and streptococcus. Infections form Shewanella putrfaciens mainly occur in soft tissue such as skin, intra-abdominal areas, or in the blood.

The major impact of Shewanella putrefaciens on human life is its use for biotechnology. Shewanella putrefaciens is a metal reducing, facilitate anaerobe and these qualities contribute to scientists fascination and multiple uses for it in biotechnology. It is used as many things from a bioremediation of chlorinated compounds to a radionuclide and a biocatalyst. Its ability to be a biocatalyst and to reduce iron has lead to interesting research done with Shewanella putrefaciens being used in fuel cells. This research is being done at the Korean Institute of Science and Technologyand has shown that Shewanella has the ability to be used in a fuel cell as part of a biosensor for lactate. This means with the presence of Shewanella putrefaciens as a electronon acceptor and metal reducer of iron their was a change of charge detected in the fuel cell when lactate was added. This presence of an electrochemical reaction could mean a lot of things for the use of Shewanella putrefaciens in fuel cells later on. The bacteria has also been shown to derive energy by reducing uranium, manganese, Vanadium, and Technetium.



Conclusion

Overall text length should be at least 1,000 words (before counting references), with at least 2 images. Include at least 5 references under Reference section.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


Edited by [Nora Hamovit], student of Joan Slonczewski for BIOL 116 Information in Living Systems, 2013, Kenyon College.