Feline calicivirus: Difference between revisions
Line 16: | Line 16: | ||
=5. Metabolic processes= | =5. Metabolic processes= | ||
One pathway FCV utilizes is an apoptosis induced replication in the host cell. This apoptosis is completed by translocating the phosphatidyl serine to the cell outer membrane, condensing the host chromosome, and fragmenting the host’s oligonucleosome DNA. During FCV replication, two major polyadenylated RNA templates, a plus-sense genome-sized RNA and a 2.5 kb subgenomic RNA with a 3’-end that is coterminal with genomic RNA, are synthesized. As replication of these templates are being completed, caspases are synthesized to cleave host proteins involved in cytoplasmic maintenance, DNA replication and repair, and structure organization to induce apoptosis. Research has shown that induction of apoptosis is dependent on the synthesis of these proteases and that induction is concurrent with FCV replication progression (8). | |||
=6. Ecology= | =6. Ecology= | ||
Habitat; symbiosis; contributions to the environment. | Habitat; symbiosis; contributions to the environment. |
Revision as of 14:44, 6 December 2021
1. Classification
a. Higher order taxa
Domain: Viruses; Phylum: Pisuviricota; Class: Pisoniviricetes; Order: Picornavirales; Family: Caliciviridae(NCBI); Genus: Feline calicivirus
2. Description and significance
Feline calicivirus (FCV) is a virus found within the Caliciviridae family, which was first discovered in 1957. It is a highly contagious virus that causes mild to severe respiratory infection, nasal congestion, oral ulcerations, fever, and virulent systemic disease amongst other symptoms in cats (1). FCV is usually detected using nasal swabs and RT-PCR but testing cannot distinguish between the many different strains of the virus (1). There are currently no treatments available and the best option is prevention via a FCV vaccine, which found FCV-suspect cats to be found significantly less often FCV-positive (1).
The study of FCV allows researchers to get insight into the mechanisms in which similar viruses infect human hosts and the ways infection can be prevented. FCV shares similarities in genomic organization, characteristics, and family with the Norwalk virus, a virus that causes acute gastroenteritis in humans (2). FCV is also relatively easy to culture in the lab, thus making it a good model for research on the Norwalk virus and potentially the treatment and prevention of gastroenteritis in human populations afflicted by it (2).
3. Genome structure
The genome of Feline Calicivirus (FCV) is a single strand of positive-sense RNA (4). The genome contains 7600 bases and three open reading frames (ORFs), or regions of the genome that encode functional proteins (4). ORF1, the ORF that is closest to the 5’ end of the RNA strand, codes for a polyprotein that contains the viral protease and other non-structural proteins that are used for replication and transcription. ORF 2 and 3, located in a sub-genomic viral mRNA, code for the viral structural proteins VP1 and VP2, respectively, that assemble into virus-like particles when FCV successfully infects a host cell (4).
4. Cell structure
Feline calicivirus (FCV) can be found in the oral and respiratory tissues of cats and is secreted in saliva, urine, and feces where it can then be transmitted to only other cats either on a fomite, through the air, or oral ingestion of an infected cat’s secretions (5). Once infected, a cat has a period of up to two weeks to shed the virus or else, it will be able to latently pass on the virus either continuously or intermittently (5). FCV transmits the most easily in multi-cat environments with a prevalence of up to 40% in shelters and catteries (5). In single cat households, the prevalence is significantly reduced (5). The exact statistics and demographics are unknown for how prevalent FCV is in the United States due to inadequate testing.
5. Metabolic processes
One pathway FCV utilizes is an apoptosis induced replication in the host cell. This apoptosis is completed by translocating the phosphatidyl serine to the cell outer membrane, condensing the host chromosome, and fragmenting the host’s oligonucleosome DNA. During FCV replication, two major polyadenylated RNA templates, a plus-sense genome-sized RNA and a 2.5 kb subgenomic RNA with a 3’-end that is coterminal with genomic RNA, are synthesized. As replication of these templates are being completed, caspases are synthesized to cleave host proteins involved in cytoplasmic maintenance, DNA replication and repair, and structure organization to induce apoptosis. Research has shown that induction of apoptosis is dependent on the synthesis of these proteases and that induction is concurrent with FCV replication progression (8).
6. Ecology
Habitat; symbiosis; contributions to the environment.
7. Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
8. Current Research
Include information about how this microbe (or related microbes) are currently being studied and for what purpose
9. References
It is required that you add at least five primary research articles (in same format as the sample reference below) that corresponds to the info that you added to this page. [Sample reference] Faller, A., and Schleifer, K. "Modified Oxidase and Benzidine Tests for Separation of Staphylococci from Micrococci". Journal of Clinical Microbiology. 1981. Volume 13. p. 1031-1035.