Rhodothermus marinus: Difference between revisions
Line 32: | Line 32: | ||
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035238/ Nolan, M., Tindall, B., Pomrenke, H., Lapidus, A., Copeland, A., Glavina Del Rio, T., Lucas, S., Chen, F., Tice, H., Chen, J., Saunders, E., Han, C., Bruce, D., Goodwin, L., Chain, P., Pitluck, S., Ovchinikova, G., Pati, A., Lvanova, N., Mavromatis, K., Chen, A., Palaniappan, K., Land, M., Hauser, L., Chang, Y., Jeffries, C., Brettin, T., Göker, M., Bristow, J., Eisen, J., Markowitz, V., Hugenholtz, P., Kyrpides, N., Klenk, H., Detter, J. "Complete genome sequence of Rhodothermus marinus type strain (R-10T)". ''Standards in Genomic Sciences''. 2009. volume 1. p. 283–290.] | [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035238/ Nolan, M., Tindall, B., Pomrenke, H., Lapidus, A., Copeland, A., Glavina Del Rio, T., Lucas, S., Chen, F., Tice, H., Chen, J., Saunders, E., Han, C., Bruce, D., Goodwin, L., Chain, P., Pitluck, S., Ovchinikova, G., Pati, A., Lvanova, N., Mavromatis, K., Chen, A., Palaniappan, K., Land, M., Hauser, L., Chang, Y., Jeffries, C., Brettin, T., Göker, M., Bristow, J., Eisen, J., Markowitz, V., Hugenholtz, P., Kyrpides, N., Klenk, H., Detter, J. "Complete genome sequence of ''Rhodothermus marinus'' type strain (R-10T)". ''Standards in Genomic Sciences''. 2009. volume 1. p. 283–290.] | ||
==Author== | ==Author== |
Revision as of 19:33, 5 April 2012
Classification
Domain; Phylum; Class; Order; family [Others may be used. Use NCBI link to find]
Species
NCBI: Taxonomy |
Genus species
Description and Significance
Describe the appearance, habitat, etc. of the organism, and why you think it is important.
Genome Structure
Complete genome sequencing of Rhodothermus marinus (strain R-10=DSM4252=ATCC43812) is a part of the Genomic Encyclopedia of Bacteria and Archaea project. This is the first time to obtain the complete genome sequence of the genus Rhodothermus, and the second sequence from members of the family Rhodothermaceae. The whole genome (3,386,737 bp) includes one main circular chromosome and one circular plasmid. The length of the plasmid is 125 kbp. The GC content is 64.3%. There are 2,914 protein-coding and 48 RNA genes among the total 2,962 predicted genes. Only 71.6% genes were identified with a putative function. However, the other genes are designated as hypothetical proteins. Moreover, there were 51 pseudogenes identified.
Cell Structure, Metabolism and Life Cycle
Interesting features of cell structure; how it gains energy; what important molecules it produces.
Ecology and Pathogenesis
Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
References
Author
Page authored by _____, student of Prof. Jay Lennon at Michigan State University.
<-- Do not remove this line-->