Xylella fastidiosa
A Microbial Biorealm page on the genus Xylella fastidiosa
Classification
Higher order taxa
Bacteria; Proteobacteria; Gammaproteobacteria; Xanthomonadales; Xanthomonadaceae
Species
NCBI: Taxonomy |
Xylella fastidiosa
Description and significance
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated. Include a picture or two (with sources) if you can find them.
Genome structure
The genome sequences of four strains of X. fastidiosa have been sequenced to date: X. fastidiosa 9a5c, X. fastidiosa Ann-1, X. fastidiosa Dixon, and X. fastidiosa Temecula-1. There are 1,579 homologous genes in all four strains, accounting for approximately 76.2% of the genome size. All pocess pathogenicity(virulence) related genes involved in the colonization of their plant host, including a 7kb conserved gene cluster encoding proteins associated with pili biogenesis, and function in attachment to the host, as well as genes for the type II secretion system, which is involved in exporting exoenzymes that degrade plant cell walls, allowing them to colonize. X. fastidiosa also pocess a gene whose protein product is an exopolysaccharide similar to the xantham gum produced by Xanthomonas campestris. At least 83 genes are bacteriophage-derived, and include virulence-associated genes.
The genome of X. fastidiosa 9a5c, first isolated in 1992 from infected twigs derived from Valencia oranges from Brazil and the cause of citrus variegated chlorosis in oranges, consists of a circular chromosome that is 2,679,306 base pairs long. It has 2,766 protein-coding regions. It also contains two circular plasmids: pXF1.3, and pXF51. pXF1.3 is 1,286 base pairs long, with 2 protein-coding regions. pXF51 is 51,158 base pairs long, with 64 protein-coding regions. Most of the genes on this plasmid aid in metabolism, but does contain 1 virulence-associated protein.
The genome of X. fastidiosa Ann-1, a strain associated with almond and oleander leaf scorch disease, consists of a linear chromosome that is 5,115,342 base pairs long, with 4,660 protein-coding regions. It has no plasmids.
The genome of X. fastidiosa Dixon, a strain that causes almond leaf scorch, consists of a linear chromosome that is 2,622328 base pairs long, with 2,358 protein-coding regions. It has no plasmids.
The genome of X. fastidiosa Temecula-1, first isolated in 1998 from an infected California grapevine and the cause of Pierce's disease of grapevines, consists of a circular chromosome that is 2,519,802 base pairs long. It has 2,034 protein-coding regions. It also contains 1 circular plasmid, pXFPD1.3, that is 1,346 base pairs long, and has 2 protein coding regions.
Two strains of X. fastidiosa, M12 and M23, are currently being sequenced for comparative genome analysis.
Cell structure and metabolism
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
Ecology
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
Pathology
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
Application to Biotechnology
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Current Research
Enter summaries of the most recent research here--at least three required
References
Doddapaneni, H., Yao, J. Lin, H., Walker, M.A., and Civerolo, E.L. "Analysis of the genome wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa". BMC Genomics. 2006. Volume 7. p.225
Simpson, A.J., Reinach, F.C., Arruda, P., Abreu, F.A., Acencio, M., Alvarenga, R., Alves, L.M.C., Araya, J.E, Baia, G.S., Baptista, C.S, Barros, M.H., Bonaccorsi, E.D., Bordin, S., Bové, J.M., Briones, M.R.S., Bueno, M.R.P., Camargo, A.A., Camargo, L.E.A., Carraro, D.M., Carrer, H., Colauto, N.B., Colombo, C., Costa, F.F., Costa, M.C.R, Costa-Neto, C.M., Coutinho, L.L., Cristofani, M., Dias-Neto, E., Docena, C., El-Dorry, H., Facincani, A.P., Ferreira, A.J.S., Ferreira, V.C.A., Ferro, J.A., Fraga, J.S., França, S.C., Franco, M.C., Frohme, M., Furlan, L.R., Garnier, M., Goldman, G.H., Goldman, M.H.S., Gomes, S.L., Gruber, A., Ho, P.L., Hoheise, J.D., Junqueira, M.L., Kemper, E.L., Kitajima, J.P., Krieger, J.E., Kuramae, E.E., Laigret, F., Lambais, M.R., Leite, L.C.C., Lemos, E.G.M., Lemos, M.V.F., Lopes, S.A., Lopes, C.R., Machado, J.A., Machado, M.A., Madeira, A.M.B.N., Madeira, H.M.F., Marino, C.L., Marques, M.V., Martins, E.A.L., Martins, E.M.F., Matsukuma, A.Y., Menck, C.F.M., Miracca, E.C., Miyaki, C.Y., Monteiro-Vitorello, C.B., Moon, D.H., Nagai, M.A., Nascimento, A.L.T.O., Netto, L.E.S., Nhani, A., Nobrega, F.G.Jr., Nunes, L.R., Oliveira, M.A., de Oliveira, M.C., de Oliveira, R.C., Palmieri, D.A., Paris, A., Peixoto, B.R., Pereira, G.A.G., Pereira, H.A., Pesquero, J.B.Jr., Quaggio, R.B., Roberto, P.G., Rodrigues, V., de M. Rosa, A.J., de Rosa, V.E., de Sá, R.G.Jr., Santelli, R.V., Sawasaki, H.E., da Silva, A.C.R., da Silva, A.M., da Silva, F.R., Silva, W.A., da Silveira, J.F., Silvestri, M.L.Z., Siqueira, W.J., de Souza, A.A., de Souza, A.P., Terenzi, M.F., Truffi, D., Tsai, S.M., Tsuhako, M.H., Vallada, H., Van Sluys, M.A., Verjovski-Almeida, S., Vettore, A.L., Zago, M.A., Zatz, M., Meidanis, J., and Setuba, J.C. "The genome sequence of the plant pathogen Xylella fastidiosa". Nature. 2000. Volume 406. p. 151-157.
Xylella fastidiosa Genome Project: http://aeg.lbi.ic.unicamp.br/xf/
Edited by Kathryn Thompson, student of Rachel Larsen and Kit Pogliano, UCSD