Benthic Zone

From MicrobeWiki, the student-edited microbiology resource
This student page has not been curated.

Introduction

The benthic zone is the lowest level of a marine or freshwater system and includes the sediment surface, the water just above it, and some sub-surface layers. Benthic zones exist all over the world in every appreciable water system, be it an ocean, lake, pond, river, or stream. The benthic zone starts at the shore and extends down along the bottom of the lake or ocean. This means that it could be as shallow as a few inches at its start, but may reach depths of 6,000 meters as it coincides with the abyssal plain at the bottom of the ocean. Because of the depths it can reach, the benthic zone is often characterized by low sunlight and low temperatures. This usually attributes to little life and biodiversity, so one would be inclined to assume that it is a vast waste. However, the presence of sediment layers at the benthic zone provides many nutrients and adds greatly to species richness. Because the benthic zone has such a range of depths, many kinds of organisms may live there. Crustaceans, sponges, bivalves, snails, sea stars, polychaetes, fish, and many others can inhabit the zone.

The nutrients at the sediment layer are usually the limiting source of energy for the organisms that inhabit the benthic zone. These nutrients actually originate from dead or decaying organic matter from higher up in the water column. This organic matter drifts down continuously from shallower depths and settles on the bottom, where it is consumed and is the main driver of the benthic zone food chain. The organisms in the benthic zone are classified into those which dwell on the surface and those which burrow into the sea floor. They are the epifauna and infauna, respectively. Organisms inhabiting the benthic zone are collectively called the benthos. The name benthos comes from the Greek noun βένθος, which means “depths of the sea”.

Diagram showing the different zones of an ocean. Note the wide range of the benthic zone. Although specific for an ocean, this is how the benthic zone is characterized across all water systems.

Physical environment

Physical Characteristics

Because the benthic zone can occur in such a wide range of environments, physical characteristics vary largely and are almost always context dependent.

Temperature

Temperature in the benthic zone ranges from warm normal temperatures at shallow depths, but may drop to 2 °C to 3 °C at the most extreme depths of the abyssal zone. At such cold temperatures, abundance of life quite low and things move at a very slow pace. Warmer waters at shallower depths provide much more energy and can host much more complex systems.

Pressure

Pressures range from very little in a few inches of water to tremendously great at the bottom of the ocean. For an extreme example, the deepest spot in the Mariana Trench (the deepest trench in the ocean) is around 36,000 feet below sea level and experiences pressures of about 16,000 psi; standard pressure at sea level is 14.7 psi.

When pressure is very high it restricts the movement of particles, so the environment is not affected by outside disturbances, such as those from tidal forces. This makes for a very homogenous environment that produces a number of peculiar traits among organisms. One such peculiarity is the enhanced size of certain organisms. At great depths in arctic and antarctic waters, dissolved oxygen content is quite high. This allows organisms to grow much larger when compared to close relatives in temperate zones (.naturalsciences.be).

Light Availability

In water, light becomes very limited in its significance at depths below about 200 meters. Between 200 and 1000 meters, the intensity of light quickly dissipates. This zone is termed the dysphotic zone and photosynthesis is no longer possible. At 1000 meters, the aphotic zone starts and light availability becomes negligible.

Microbial communities

Benthic microorganisms are almost exclusively microalgae and bacteria, but other others include: ciliates, amoebae, and flagellates. In general, most organisms there are detritivores and scavengers because of the abundance of dead or decaying organic matter. In addition to these heterotrophs, there are chemoautotrophs present that use the substrate to make biomass. There are also photoautotrophs present at shallower depths where sunlight is abundant.

Microbial processes

Nutrient Flow

Benthic microorganisms are key to controlling nutrient flow between sediment layers and the water column. As nutrients are taken in and stored by microorganisms, their flow through the system is greatly slowed. This process can act as a buffer. Buffers are essential in all natural systems and prevent excessive flux of elements. One such example is seen when microalgae buffer nutrients to prevent phytoplankton overexploitation, which often results in eutrophication (web.vims.edu). The impacts of benthic microorganisms spread, much like the impacts of all other microbes, across the community as a whole. They provide essential energy and nutrients at the lower levels of the food chain and are imperative to the success of other forms of life.

EPS Formation

In benthic areas where sunlight does penetrate, microalgae are ubiquitous. When these algae photosynthesize, they take up carbon dioxide and other micronutrients. Much of the carbon taken up is later released as extracellular polymeric substances (EPS or “slime”). EPS is thought to play an important role in the sediment layer, as it contributes both to sediment structure and the local food web. As the name “slime” implies, EPS is a sticky organic material that constitutes biofilms and allows cellular attachment to surfaces (web.vims.edu). Its stickiness helps keep sediment particles together and prevents resuspension, which keeps dissolved oxygen levels stable (btnep). EPS further contributes because it is rapidly metabolized by bacteria and thereafter provides nutrients to the local food web.

Current Research

Microbial Response to Elevated Hydrocarbon Levels

Some researchers have investigated the impacts of the Deepwater Horizon oil spill on microbial community makeup. The spill that started on April 20th, 2010 lasted for 87 days and released 210 million US gallons of oil into the surrounding environment. Its impacts are undoubtedly far and wide, and the effects on the microbial community are tremendous. The group used taxonomic and parallel marker gene approaches to determine the microbial community makeup before and after the spill. As expected, diversity and richness declined greatly. In the sites studied, nematodes dominated naturally, but after the spill, fungi were the overwhelmingly dominant group. The spill caused certain opportunistic and resilient species to take hold of communities. Fungi that could take advantage of high levels of hydrocarbons, specifically those of the genera Apergillus, Acremonium, Acarospora, Rhodocollybia, and Rhizopus, were found at very high abundances post-spill, but were rare pre-spill. Interestingly, fungi of the genus Altenaria demonstrated increase activity of lignocellulose-degrading enzymes. Those enzymes have actually been used for the breakdown of industrial toxins. A complete restructuring of microbial communities like this causes an effect that precipitates into all forms of marine life and will be felt for a considerable amount of time (Bik et al. 2010).

References

http://www.btnep.org/subsites/water/estuarywater/sourcesofpollution/sedimentresuspension.aspx

http://web.vims.edu/bio/shallowwater/benthic_community/benthic_microalgae.html

http://www.naturalsciences.be/active/sciencenews/archive2005/polarregions/page3/document_view

http://oceanservice.noaa.gov/facts/light_travel.html

Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic Shifts in Benthic Microbial Eukaryote Communities following the Deepwater Horizon Oil Spill. PLoS ONE 7(6): e38550. doi:10.1371/journal.pone.0038550.

Edited by Michael Schock, a student of Angela Kent at the University of Illinois at Urbana-Champaign.