Magnetospirillum gryphiswaldense

From MicrobeWiki, the student-edited microbiology resource
This student page has not been curated.

Classification

Domain: Bacteria
Phylum: Proteobacteria
Class: Alphaproteobacteria
Order: Rhodospirillales
Family: Rhodospirillaceae


Species

NCBI: [1]

Magnetospirillum gryphiswaldense

Description and Significance

Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome Structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence?


Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

M. gryphiswaldense can be found in freshwater, aquatic environments where there is vertical chemical stratification (i.e., varying concentrations of oxygen and iron ions within the water) [1]. Specifically, M. gryphiswaldense is highly sensitive to oxygen concentrations; being microaerophilic, they prefer only very low levels of dissolved oxygen (around 0.5-1.0%) [1,6]. M. gryphiswaldense remains at an ideally oxygenated level within its environment through magnetotaxis [1]. The chain of magnetosomes within M. gryphiswaldense allows the microbe to be continually aligned with the geomagnetic field, providing a sense of direction [1]. If oxygen levels are too low, M. gryphiswaldense simply propels itself upwards in line with the geomagnetic field until it reaches an ideal oxygen concentration [1]. Likewise, if oxygen levels become too high, the microbe simple reverses its direction of flagella rotation, and swims down along the geomagnetic field lines until it reaches lower oxygen levels [1]. By limiting movement to a fixed axis that aligns with the oxygen gradient, M. gryphiswaldense is able to efficiently explore an maneuver within its environment.

References

[1] Abreu, F., & Acosta-Avalos, D. (2018). Biology and Physics of Magnetotactic Bacteria. Microorganisms.

[2] Ardelean, I., Moisescu, C., Ignat, M., Constantin, M., & Virgolici, M. (2009). Magnetospirillum Gryphiswaldense:Fundamentals and Applications. Biotechnology & Biotechnological Equipment, 23(sup1), 751–754.

[3] Green, H., Hofmeister, C., Chin, S., & Coyte, E. (2016). The Bacteria That Make Perfect, Tiny Magnets. YouTube. SciShow.

[4] Magnetospirillum gryphiswaldense (ID 1508). (2014).

[5] Mannucci, S., Ghin, L., Conti, G., Tambalo, S., Lascialfari, A., Orlando, T., … Sbarbati, A. (2014). Magnetic Nanoparticles from Magnetospirillum gryphiswaldense Increase the Efficacy of Thermotherapy in a Model of Colon Carcinoma. PLoS ONE, 9(10).

[6] [https://doi.org/10.1007/s007060200047 Šafařík, I., & Šafaříkov&#, M. (2002). Magnetic Nanoparticles and Biosciences. Monatshefte f�r Chemie / Chemical Monthly, 133(6), 737–759.]

[7] Schüler, D., & Köhler, M. (1992). The isolation of a new magnetic spirillum. Zentralblatt Für Mikrobiologie, 147(1-2), 150–151.

[8] Sun, J., Li, Y., Liang, X.-J., & Wang, P. C. (2011). Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions. Journal of Nanomaterials, 2011, 1–13.

[9] Uebe, R., Schüler, D., Jogler, C., & Wiegand, S. (2018). Reevaluation of the Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1 with Single-Molecule Real-Time Sequencing Data. Genome Announcements, 6(17).

[10] Vargas, G., Cypriano, J., Correa, T., Leão, P., Bazylinski, D., & Abreu, F. (2018). Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules, 23(10), 2438.

[11] Wang, Q., Wang, X., Zhang, W., Li, X., Zhou, Y., Li, D., … Li, J. (2017). Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions. Scientific Reports, 7(1).

[12] Wang, X., Wang, Q., Zhang, W., Wang, Y., Li, L., Wen, T., … Li, J. (2014). Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1. Genome Announcements, 2(2).

[13] Zahn, C., Keller, S., Toro-Nahuelpan, M., Dorscht, P., Gross, W., Laumann, M., … Kress, H. (2017). Measurement of the magnetic moment of single Magnetospirillum gryphiswaldense cells by magnetic tweezers. Scientific Reports, 7(1).

Author

Page authored by MacKenzie Emch, student of Prof. Jay Lennon at IndianaUniversity.