Chlamydophila psittaci

From MicrobeWiki, the student-edited microbiology resource

A Microbial Biorealm page on the genus Chlamydophila psittaci

Classification

Higher order taxa

Domain; Phylum; Class; Order; family

Species

Chlamydophila psittaci

Description and significance

Chlamydophila psittaci is an obligate, intracellular, gram negative bacteria that occur as a parasite in eukaryotic cells. These cells are coccoid and non-motile, with sizes ranging from 0.2-1.5 m. The cylamydial cell envelope lacks peptidoglycan, but instead has an outer membrane containing lipopolysaccharide and a cytoplasmic membrane bilayer. (1,6,7)

Chlamydophila psittaci causes a systemic infectious disease, psittacosis, in the parrot family and other avian species. Chlamydophila psittaci is present in feces, nasal secretions, and feathers of infected birds and the bacterium may be transmitted to humans through inhalation of dust from the contaminated bird. In 1930, the largest epidemic of psittacosis affected 750-800 individuals leading to the isolation of C psittaci in Europe and the United States. A total of 923 human cases of psittacosis have been reported to the US Centers for Disease Control and Prevention from 1988 through 2003. (2,6,7)

Chlamydophila psittaci, for many years, was confirmed through isolating the organism through cell culture and required scraping of cells from the site of infection of patients. New techniques of polymerase chain reaction and ligase chain reaction has improved detection of these specimens. Diagnostic techniques involved fluorescence microscopy and enzyme-linked immunoassays. (6)

Chlamydophila psittaci infection may be treated through antimicrobial therapy such as tetracycline, doxycycline, erythromycin, and sulfonamides. (6)

Genome structure

Describe the size and content of the genome. How many chromosomes? Circular or linear? Other interesting features? What is known about its sequence? Does it have any plasmids? Are they important to the organism's lifestyle?

Cell structure and metabolism

Chlamydophila psittaci has a major outer membrane protein (MOMP), consisting of predominately Beta-sheet content, similar to the biochemical properties of porin protein. These channels are permeable to ATP and may be the route in which the bacterium takes advantage of nucleoside triphosphates. It is known that Chlamydophila psittaci obtain ATP and essential amino acids from the host cell. (6,8)

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

Chlamydophila psittaci causes an infection through the respiratory system by using chlamydial elementary bodies to attach to the respiratory epithelial cells of the host and is engulfed through phagocytosis. Elementary bodies spread via the blood steam to the reticuloendothelial system and become reticulate bodies which depend on host cell ATP to grow. Within the inclusion of the host cell, reticular bodies under binary fission for 8-10 hours after infection and continue to divide for 20 hours. Reticular bodies give rise to elementary bodies after 20 hours of infection. After 48-72 hours, the cycle is completed and the infected host cell’s inclusion becomes filled with 10-1000 elementary bodies. Elementary bodies are released after lysis of cell and may infect fresh host cells. (3,6,7)

Chlamydophila psittaci affects the parrot family and other avian species. Once infected, these species will be susceptible to symptoms such as appetite and weight loss, diarrhea, sinusitis, and respiratory distress. Humans contract the disease through handling sick birds. Symptoms in humans include fever, cough, dyspnea, mild phryngitis, epistaxis, severe headache, and pneumonia. Certain breeds of Chlamydophila psittaci may also infect sheep, goats, and cows. (3,6)

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.


1.Architecture of the Cell Envelope of Chlamydia psittaci 6BC

2.Chlamydophila psittaci Transmission from Pet Birds to Humans

3.Emedicine psittacosis

4.http://www.chlamydiae.com/docs/Chlamydiales/ev_divergence.asp

5.http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome&cmd=Retrieve&dopt=Overview&list_uids=15217

6.Encyclopedia of Microbiology Second Edition Volume 1 A-C pages (781-787) Year 2000 Lederberg, Joshua

7.Dictionary of Microbiology and Molecular Biology 3rd Edition Year 2001 Singleton, Paul and Sainsbury, Diana Pages 154.

8.http://iai.asm.org/cgi/content/abstract/66/11/5202

Edited by Coleman Ho, student of Rachel Larsen