Shower Curtain
Description of Niche
Location of Niche
(Ray)-i kind of started the intro a little bit only because some if it tied into my current research article summary--feel free to delete or do whatever with it(christy)
Biofilms thrive in moist environments, including in our own households. One household alone is home to billions of microbes. A shower curtain houses many microbes, fungi, and potentially pathogenic organisms as well. Both the water-facing side of the shower curtain and the back side of it contains many microbes, which may circulate throughout the entire bathroom.
Can we mention somewhere that the biofilm communities found on shower curtains are also found in environments with similar conditions, such as recirculating water systems, water pipelines, drinking water distribution systems, catheters, toilet bowls, pools, and hot tubs (even water filters). Also, maybe tie in by mentioning what these environments have in common? -Harn
Physical Conditions
A shower curtain will have a wide range of physical conditions depending on its location and usage. Typically, the temperature and pH will be highly variable- changing with every use of the shower as well as its location globally- while pressure remains relatively constant at near atmospheric pressure and moisture/humidity, although not constant, are relatively high. There is a wide range of organic and non-organic material that organisms must make use of or protect themselves from such as dead skin cells, soil, other organisms introduced, detergents, cleaning solutions, and possibly blood, urine, and feces. Thus, we see that the organisms that live in this niche have a unique metabolism that allow them to break down many materials and have several defense mechanisms to shield themselves from products that threaten them.
Influence by Sub-Niches and Adjacent Communities
Is your niche close to another niche or influenced by another community of organisms?
Sub-niches
The specific location on a shower curtain greatly influences the type of microbe that will form.
Vinyl/Nylon/Glass Door Shower Enclosures
- These biofilms feed off of Carbon sources such as: dead human skin cells, soap, other surfaces such as shampoo bottles, etc..
-Dry Shower Curtain Samples
-Bottom of Shower Curtain Samples
-Folds/Consistently Moist areas of shower curtains http://aem.asm.org/cgi/reprint/70/7/4187
Other
- Effects of Bacteria in Toilet
*** <<http://lequia.udg.es/lequianet/WatSciTech/04606/0311/046060311.pdf>>
- Sink
Conditions under which the environment changes
Do any of the physical conditions change? Are there chemicals, other organisms, nutrients, etc. that might change the community of your niche.
Shampoo: pending (Coel)
Conditioner: pending (Harn)
Body Wash: pending (Harn)
Urine: As it turns out, if you can't hold the tinkle, and you urinate in the shower, you may be contributing to the populations of microbes that live on the shower curtain. Although urine typically has a lower pH than water- 5.0-8.0 versus 7.0 respectively (Bales 1984), urine contains many nutrients organisms can make use of. Human urine contains 6.2 mg of protein per every 100mL (Savory 1968) as well as small soluble DNA (Su 2004), giving microbes the substrates necessary for cell growth.
Microbes of the Shower Curtain Community
Most of the microbes present in shower curtains are opportunistic pathogens, and will therefore are likely only to cause problems in immune-suppressed individuals. The most common and well-understood of these include methylobacterium, sphingomonas, mycobacterium, and serratia marcescens, though the first two are the most abundant[13].
Microbes on shower curtains generally form biofilms, which allow participating bacteria to interact and cooperate in ways they normally would not. Bacteria in biofilm communities exhibit significant behavioral differences from their independent counterparts, and their cooperation results in greater resistance to environmental stressors. One prime example is the production of EPS (extracellular polymeric substance or exopolysaccharide) by cells in a biofilm; this sticky polysaccharide matrix holds the cells together, attaches them to surfaces, and facilitates biochemical communication between cells. Most importantly, the matrix offers the bacterial community within a great deal of protection against detergents and antibiotics, making biofilms very difficult to destroy completely.
Species | Description |
Methylobacterium | |
Sphingomonas | |
Mycobacterium [19],[20] | Mycobacteria are commonly found in the bathroom environment as mycobacterium avium, subspecies hominis (MAH): part of a mycobacterium avium complex (MAC) that includes subspecies avium (MAA) and paratuberculosis (MAP). They can cause respiratory infections and also non-infectious respiratory problems when inhaled, but those found on shower curtains are mostly harmless to healthy individuals and are, instead, opportunistic pathogens that affect the immunosuppressed. Mycobacterium avium can also be found naturally in soils, plants, fish, drinking water and natural water, and as intracellular pathogens are also able to survive and grow in animal macrophages and phagocytic protozoa.
Mycobacterium are uniquely and extraordinarily resitant. They can tolerate the extreme temperature of ice machines and water heaters, and are more than a hundred times more resistant to chlorine than is e. coli. Additionally, their ability to survive phagocytosis and grow within phagocytes and amoebas protects them from conventional water purification regimens. The mycobacteria's lipid-rich cell wall confers significant hydrophobicity, and in wet environments this encourages their attachment to surfaces. In terms of a biofilm, mycobacterium are thought to be among the first to colonize because of this trait. |
Serratia marcescens [21],[22] | Serratia marcescens is a motile, airborne, gram negative bacterium found naturally in soil, water, the subgingival biofilm of teeth, and sometimes in the intestines. In humans, it is a pathogen associated with a range of problems, including urinary tract infections, wound infections, conjunctivitis, keratitis, and meningitis. In bathrooms, it is commonly responsible for the red or pink slimy substance found on surfaces.
S. marcescens prefers damp environments, and can grow in temperatures ranging from 5 to 40°C and and pHs from 5 to 9; additionally, it will grow anywhere phosphorous-containing materials or fatty substances accumulate, i.e., soap residues in shower areas, feces in toilets, food residues in pet dishes. S. marcescens is notable for being able to perform casein-hydrolysis, which produces metalloproteases believed to function in extracellular matrix formation. Another distinction in its metabolism is the ability to break down tryptophan and citrate, and to convert the latter to a source of carbon. It is a facultative anaerobe and can produce lactic acid by oxidative or fermentative metabolism. Only in recent history has S. marcescens been recognized as a human pathogen, and several strains are antibiotic-resistant. While chlorine is known to help control S. marcescens populations, the most effective disinfectant is bleach. |
Legionella [15] | Legionella is a motile, gram negative aquatic bacterium found in creeks, streams, air conditioning systems, and other human water supply and distribution systems. In nature is flourishes as a parasite to eukaryotic cells and amoebae, and in humans it acts as an opportunistic pathogen, infecting immunocomprised individuals via inhaled aerosols. Legionella pneumophila is responsible for Legionnaires' disease and Pontiac fever.
Legionella can survive in temperatures below 20°C and up to 55°C, and can be eradicated by persistent treatment with chlorine or exposure to high temperatures. |
Other Bacteria
A large number of other microbes have been found to contribute to shower curtain biofilms, including but not limited to afilpia felis, vibrio cholerae, moraxella osloensis, methicillin resistant staphylococcus aureus (MRSA), escherichia coli, actinomycetales, legionella, nocardia, and gordonia. [14]
Shower Curtain Microbes (Non-Bacterial)
Species | Description |
Aspergillus niger | (Barrett 2003) |
Phoma violacea | (Green 1972) |
Interaction of Microbes
The fungus known to grow in the shower curtain has several methods to compete with other organisms. For example, Aspergillus niger is able to produce the antibiotics malformin and tensyuic acids (Curtis et al and Yoko et al), as well and antifungal peptides (Gun et al).
Methylobacterium pending-Dela/Harn
Sphingomonas pending-Ray
The Effect of Shower Curtain Microbes on Their Environment and Community
(easier to put effect on environment and interactions with other microbes together, since it overlaps?)
Bacterial Processes and their Effects
Methylobacterium is a facultative methylotroph, which means it has the ability to grow by reducing carbon compounds that have one or more carbon atoms but no carbon-carbon bonds. It can grow on methylamine, methanol, C2, C3, and C4 compounds, including the methanol emitted by the stomata of plants, and even by metabolizing formaldehyde. Some strains of the bacteria have been shown to stimulate seed germination and plant development by production of chemical signals such as cytokinin zeatin, indole acetic acids, and auxins (phytohormones, or plant growth hormones). [23],[24] In their natural environment, this gives rise to a mutually beneficial relationship between host and bacteria, but in shower curtains the effect is as yet unknown. Additionally, methyobacterium are known slime-producers, and contribute in large part to the production of EPS in biofilms; this is one reason for their abundance in the shower curtain biofilm community, and why they are considered among biofilm settlement "pioneers". They are known to fix nitrogen and certain end products of their unique metabolism are thought to serve as regulators or signals in bacterial communities. For example methylobacterium extorquens AM1 produces several acyl-homoserine lactones, regulatory molecules for many gram-negative bacteria. [25]
Metabolism of Sphingomonas pending-Ray
Other Microbial Processes and their Effects
Do they ferment sugars to produce acid, break down large molecules, fix nitrogen, etc. etc.
The fungal species Phoma violacea is able to digest a variety of carbohydrates such as: glucose, mannose, galactose, sucrose, lactose, raffinose, xylose, rhamnose, mannitol, dextrin, starch; as well as a wide variety of fatty acids including: laurate, myristate, palmitate, stearate, linoleate, ricinoleate, "alkali-refined linseed oil"; and is vitamin-autotrophic (Eveleigh). Thus, they are well adapted to changing conditions of the shower because they are able to metabolize a wide range of materials and create molecules that are essential to them.
Metabolism of A. niger pending-Mary
How to keep it clean
Antimicrobial Shower Curtain
Aegis™ Environments have developed antimicrobial materials that include shower curtains.(1) This “Microbe Shield Technology” kills microbes without the use of harmful chemicals that are conventionally used. The compound 3-Trimethoxy silyl propyl dimethyl octadecyl ammonium chloride is responsible for its antimicrobial properties. There are three parts to this compound. First, the silane base is the anchor for this antimicrobial compound. It is covalently bound to the surface by hydrolysis reactions which allow crosslinking and polymerization to other molecules. Second, the centrally positively charged nitrogen draws the microbes (cell membrane is negatively charged.) Third, the long molecular chain (18) is responsible for piercing the microbe. As the microbes are drawn to the positively charged nitrogen, they are pierced. Electrocution also occurs due to the interaction of the positive nitrogen and the negative cell wall.
Shower Cleaners
Shower cleaner are often to clean shower curtains. Shower curtain usually contain a nonionic surfactant, a chelating agent, and an alcohol.(13) Most showers’ active ingredients are: isopropyl alcohol; Antarox BL-225 (nonionic surfactant); and Hamp-ene diammonium EDTA (chelating agent.) The alcohol component is assist in dissolving the materials and fatty substances (soap and oily substances) in the water. The chelating agent sequesters ions and pulls them into solution. Finally, the nonionic surfactant breaks the surface tension of the water. This allows the water to glide down the curtain effortlessly. Thus removing the majority of possible nutrients the microbes could use. (13)
Chlorinated Water
In the US, water is often treated with chlorine in order to disinfect and purify. Chlorine is a strong oxidant that will oxide the DNA of all living matter. Because of its toxic effect on harmful microbes, chlorine is used as a universal treatment for water sources. Chlorinated water are used in showers, thus providing some disinfecting effect to the shower curtain. However its viability is about thirty minutes. (SITE)
Disinfectant
Bleach
Bleach is a sodium hypochlorite solution that is extremely efficient in eradicating microbes. It is a cheap and efficient disinfectant. Sodium hypochlorite enters the cell, interacts with the microbes components and compr (SITE)
Current Research
Molecular Analysis of Shower Curtain Biofilm Microbes [1]
Scientists Scott T. Kelley, Ulrike Theisen, Largus T. Angenent, Allison St. Amand, and Norman R. Pace conducted experiments with regards to the type of microbe present on typical household shower curtains.
Hey, I found these while looking up other stuff: keep or discard at your discretion! :) -Harn
"http://technology.newscientist.com/article/dn11037-bacteria-harnessed-as-micro-propeller-motors.html" Sphingomonas used as miniature motors "In the future, such hybrid swimming micro-robots could even be used to deliver drugs inside the liquid environments of the human body, such as the urinary tract, eyeball cavity, ear and cerebrospinal fluid"
http://www.uwnews.org/article.asp?articleID=2030 Mapping Pseudomonas genome may help with cystic fibrosis "Scientists have completed mapping the genome of Pseudomonas aeruginosa, the largest bacterium sequenced so far, which may lead to potential new treatments for patients with cystic fibrosis (CF), patients with severe burns and others who develop this type of infection. The findings are reported in the Aug. 31 issue of the British journal Nature."
Hi, I found this research about mehtylobacteria. Hope you like it. Feel free to edit it!! -Dela http://aem.asm.org/cgi/reprint/74/7/2218?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=methylobacteria&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT "This paper talked about a new method discovered to study Methylobacterium communities in different ecosystems. This is a rapid and specific cultivation-independent method using 16S rRNA gene-targeted primers specific for this genus. These primers were combined with a reverse primer that binds to the tRNA gene located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS)in PCR. They found out tht the 16S-23S rRNA IGS sequence is more useful to diferentiate similar strains than the 16S rRNA. By using this method, they were able to generate fingerprints of the methylobacterium communities from phyllosphere samples. As a result, ther were able to compare these communitites on leaves of different plant species."
References
2. Anesti, Vasiliki, Jyotsna Vohra, Shalini Goonetilleka, Ian R. McDonald, Bettina Straubler, Erko Stackebrandt, Donovan P. Kelly, and Ann P. Wood. 2004. "Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora." Environmental Microbiology. Blackwell Publishing Ltd.
3. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984 Mar;30(3):426-32.
4. Barrett Tony D. International Journal of Therapy and Rehabilitation, Vol. 10, Iss. 6, 01 Jun 2003, pp 281
5. Curtis, Roy W., Walter R. Stevenson, and John Tuite. Malformin in Aspergillus niger-Infected Onion Bulbs (Allium cepa). Appl Microbiol. 1974 September; 28(3): 362–365.
6. E. W. Rice, D. J. Reasoner, C. H. Johnson, and L. A. DeMaria, Monitoring for Methylobacteria in Water Systems Journal of medical microbiology, Nov.2000, P.4296-4297
7. Eller, G. and P. Frenzel. 2001. “Changes in activity and community structure of methane oxidizing bacteria over the growth period of rice.” App. Environ. Microbiol. 67, 2395-2403.
8. Eveleigh, D. E. The growth requirements of Phoma violacea, with reference to its disfiguration of painted surfaces. Ann. appl. Biol. (1961), 49, 412-423.
9. Green W. F. Precipitins against a fungus, Phoma violacea, isolated from a mouldy shower curtain in sera from patients with suspected allergic interstitial pneumonitis. Med J Aust. 1972 Apr 1;1(14):696-8.
10. Gun Lee D, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS. Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun. 1999 Oct 5;263(3):646-51.
11. Hornei, B., E. Luneberg, H. Schmidt-Rotte, M. Maass, K. Weber, F. Heits, M. Frosch, and W. Solbach. 1999. Systemic infection pf and immunocompromised patient with Methylobacterium zatmanii. J. Clin. Microbiol. 37:249.
12. "Research on microbial biofilms (PA-03-047)". NIH, National Heart, Lung, and Blood Institute (2002-12-20).
16. Savory, John, Pin H. Pu 1, and F. William Sunderman Jr. 1 "A Biuret Method for Determination of Protein in Normal Urine." Clinical Chemistry, Vol 14, 1160-1171, 1968
17. Su YH, Wang M, Brenner DE, Ng A, Melkonyan H, Umansky S, Syngal S, Block TM. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn. 2004;6:101–7.
18. Yoko Hasegawa, Takashi Fukuda, Keiichi Hagimori, Hiroshi Tomoda and Satoshi Ōmura, “Tensyuic Acids, New Antibiotics Produced by Aspergillus niger FKI-2342”, Chem. Pharm. Bull., Vol. 55, 1338-1341 (2007).
19. Fordham von Reyn, C., Maslow, J.N., Barber, T.W., Falkinham, J.O., "Persistant colonisation of potable water as a source of Mycobacterium avium infection in AIDS", Lancet, Vol. 343, 1137-1141 (1994).
20. Falkinham JO 3rd, Iseman MD, de Haas P, van Soolingen D., "Mycobacterium avium in a shower linked to pulmonary disease.", J Water Health. 2008 Jun;6(2):209-13.
21. JD Cirillo, S Falkow, LS Tompkins and LE Bermudez , "Interaction of Mycobacterium avium with environmental amoebae enhances virulence." Infect. Immun., Sep 1997, 3759-3767, Vol 65.
22. Serratia marcescens. http://www.serratia-marcescens.org/
23. René Verhoefa, Pieter de Waardb, Henk A. Scholsa, Matti Siika-ahoc and Alphons G. J. Voragen. "Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide." Carbohydrate Research, Volume 338, Issue 18, 1 September 2003, Pages 1851-1859.
24. C . Nieto Penalver , D . Morin , F . Cantet , O . Saurel , A . Milon , J . Vorholt. "Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions." FEBS Letters , Volume 580 , Issue 2 , Pages 561 - 567.
25.
edited by Mary De Unamuno, Christy Furukawa, Raymon Araniego, Harn Chiu, Coel Momita, and Delaram Rostami (students of Rachel Larsen)