Life on Mars

From MicrobeWiki, the student-edited microbiology resource
Revision as of 04:54, 25 April 2011 by SteigmeyerA (talk | contribs) (Created page with "==Introduction== [[Image:PHIL_1181_lores.jpg|thumb|300px|right|Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By D...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Introduction

Electron micrograph of the Ebola Zaire virus. This was the first photo ever taken of the virus, on 10/13/1976. By Dr. F.A. Murphy, now at U.C. Davis, then at the CDC.


While observing Mars during the planet’s “Great Opposition” in 1877, Italian astronomer Giovanni Schiaparelli saw dark lines crisscrossing the surface of the planet. He reported seeing “canli,” the Italian word for channels (AMNH). This finding was misleadingly translated into English as “canals” – a word that has a certain “suggestion of intelligent design,” according to astronomer Carl Sagan (Cosmos). This event triggered a worldwide fascination with the Red Planet and speculation on what life may exist there. At the turn of the 20th Century, H.G. Wells portrayed a violent race of advanced Martians regarding the Earth with envious eyes and leaving their dying world to conquer ours with their great machines. Around the same time, Edgar Rice Burroughs wrote of John Carter, a gentleman from Virginia who traveled to “Barsoom,” the native’s name for Mars – a dying planet divided by two warring races: the red humanoids of Helium and the green, four-armed giants known as the Tharks. The Martians of 1950s b-sci-fi films became even more outlandish. Creatures like the stocky, brown, three-eyed invaders in the 1953 adaptation of The War of the Worlds or the giant “bat-rat-spider-crab” from 1959’s The Angry Red Planet scurried across the blood-red soils of a fictional Mars. Though excitement for this alien world was building, our first glimpses of this mysterious neighbor, in the decades to come, would be somewhat anti-climactic. The Mariner 3 spacecraft gave humans the first close-up look at Mars during a flyby in 1964. The Viking landers sent back the first pictures from the surface of another planet in 1976. These images showed a world that seemed almost familiar. The vast rocky planes and crooked mountain peaks closely resembled Earth deserts. If not for the rust-colored soil, Mars may not have seemed alien at all. Undoubtedly many people were disappointed that our probes did not capture a little green man waving back at the camera. But, even with those first missions, evidence began to mount for the presence of small, but certainly not insignificant, Martian life. Recent evidence nearly conclusively proves that Mars was once a much warmer and wetter planet. Conditions on Mars could have been very conducive to life several billion years ago. Unlike Earth, however, Mars failed to maintain an atmosphere and the liquid water evaporated into space and the planet became increasingly arid and vulnerable to high levels of radiation. If life existed before this climate change, could it have evolved fast enough to survive? Even with the planet’s extreme conditions, could there be small oases capable of supporting microbial life? It wouldn’t take a six-foot, bug-eyed beast with eight tentacles to profoundly alter our views of the universe – all we need is just one microscopic cell.





Section 1


Include some current research in each topic, with at least one figure showing data.

Section 2


Include some current research in each topic, with at least one figure showing data.

Section 3


Include some current research in each topic, with at least one figure showing data.

Conclusion


Overall paper length should be 3,000 words, with at least 3 figures.

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.

Edited by student of Joan Slonczewski for BIOL 238 Microbiology, 2009, Kenyon College.