Rhodococcus ruber

From MicrobeWiki, the student-edited microbiology resource
This student page has not been curated.

Classification

Domain: Bacteria

Phylum: Actinobacteria

Class: Actinobacteria

Order: Corynbacteriales

Family: Nocardiaceae

Genus: Rhodococcus

Species

NCBI: [1]

Rhodococcus ruber

Description and Significance

Describe the appearance, habitat, etc. of the organism, and why you think it is important.

Genome Structure

12 genome studies have been reported for the following strains of Rhodococcus ruber: R. ruber str. YC-YT1, R. ruber str. YYL, R. ruber str. P14, R. ruber str. SD3, R. ruber str. R1, R. ruber str. DSM 43338, R. ruber str. P25, R. tuber IEGM 231, R. ruber str. OA1, R. ruber str. BKS 20-38, R. ruber str. Chol-4, and R. ruber str. NCRX 15591.

The genome size of Rhodococcus ruber is on average 5.57 Mb. The genome size varies in some strains and larger sizes can be attributed to the presence of large linear or circular plasmids. The average protein count is 4932 and the average GC% is 70.49. A high GC% is characteristic of Rhodococcus species.

Cell Structure, Metabolism and Life Cycle

Interesting features of cell structure; how it gains energy; what important molecules it produces.


Ecology and Pathogenesis

Habitat; symbiosis; biogeochemical significance; contributions to environment.
If relevant, how does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

References

[2] Alvarez, H. M. Biology of Rhodococcus; Springer, 2010; Vol. 16.

[3] Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution 2018, 240, 387–395.

[4] Finnerty, W. R. The Biology and Genetics of the Genus Rhodococcus. Annual Review of Microbiology 1992, 46, 193–218.

[5] Gravouil, K.; Ferru-Clément, R.; Colas, S.; Helye, R.; Kadri, L.; Bourdeau, L.; Moumen, B.; Mercier, A.; Ferreira, T. Transcriptomics and Lipidomics of the Environmental Strain Rhodococcus ruber Point out Consumption Pathways and Potential Metabolic Bottlenecks for Polyethylene Degradation. Environmental Science & Technology 2017, 51, 5172–5181.

[6] Gilan (Orr), I.; Hadar, Y.; Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology 2004, 65.

[7] Heras, L. F. D. L.; Fernández, E. G.; Llorens, J. M. N.; Perera, J.; Drzyzga, O. Morphological, Physiological, and Molecular Characterization of a Newly Isolated Steroid-Degrading Actinomycete, Identified as Rhodococcus ruber Strain Chol-4. Current Microbiology 2009, 59, 548–553.

[8] Montazer, Z.; Najafi, M. B. H.; Levin, D. B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers 2020, 12.

[9] Mor, R.; Sivan, A. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 2008, 19, 851–858.

[10] Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation 2013, 84, 204–210.

[11] Sivan, A.; Szanto, M.; Pavlov, V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology 2006, 72, 346–352.

Author

Page authored by Hannah von Werder, student of Prof. Jay Lennon at Indiana University.